
Free Flowing Particles
Skyler Krouse, Connor Pugh, Matthew Quinn, Zachary 

Schecter



The Inspiration…

http://www.youtube.com/watch?v=M_SIjJo0ugM


What We 
Accomplished



Loaded Textures

Textures are loaded in advance to set 
the color, mass, and acceleration of the 
particles. Multiple acceleration field 
textures are loaded to allow the user to 
switch between them and see different 
motion effects.

3 acceleration fields 
the user can toggle 
between.



3D Collisions & 
Acceleration Fields

The particle space is in 3 dimensions, 
mimicking a box full of particles we are 
looking at from above.

Acceleration fields defined by textures 
drive movement in the scene.

Darker particles are heavier

Particles that are moving fast turn 
yellow/green



Collision Optimization

To improve collision detection, 
implemented 2D spatial subdivision; 
indices are stored in cells within a 
partitioned list, only particles in 
neighboring cells are checked for 
collision.

Massive performance boost- 60+fps 
with 200k particles

Collision response is a single step 
solver instead of the iterative solver



Particle Life

When feature is enabled, particles 
can have a random lifespan 
(selected from a predetermined 
range) and respawn when their 
lifespan ends.

The user can set the spawn point of 
the particles to be on a radius 
around a given point.



Interactive Acceleration Lines

Users can draw lines on the screen to 
accelerate particles along them, as if 
creating a current in the particle field. 
This is done by taking the mouse input 
of users dragging a line and 
accelerating particles that touch the line 
accordingly.



Line Optimization

Lines reuse collision cell data, only 
iterating over particles within nearby 
cells

List of nearby cells is built and retained 
on line creation; each frame, iterates 
over particles in each cell created 
during collision checks

Uses Bresenham's line algorithm



Further Potential Optimizations

We are currently not storing our particle data 
inside of textures; with the amount of particles 
we are reaching, it would probably be optimal to 
switch to a texture-based system.

Finer control over the shader code would 
probably allow for some minor optimizations, as 
Taichi only parallelizes the outer loops in kernels. 
More performance could definitely be achieved 
with a bespoke C++ implementation to get rid of 
the Taichi overhead.

Running the sim at 10 million particles… quite slow!


